What is the difference between PIN macros and PIO functions?

The PIOxxxx functions and PinXXXX macros were originally designed to support the 68338 based
CF1, on which all of the general purpose I/0 pins were under direct control of the CPU
through registers for simple read, write, and configuration operations. Service times for
these pins are deterministic and near instantaneous depending on the invocation method as
described ahead.

The 68332 based CF2 replaced the CTM module with a more capable TPU module, but lost direct
control of the TPU I/0 pins to an indirect mechanism of service requests and acknowledgement
transactions between the CPU and TPU module via internal registers and a shared dual-port
ram. Service times for these pins varies with TPU loading, and valid pin responses are only
guaranteed for transactions where the CPU waits for completion which is a function of the
invocation method as described ahead. The CF2 TPU controlled I/O pins includes the 15 pins
named TPU1l through TPU15 and the CPU controlled I/0 pins include:

c40 /IRQ7 10k pull-up, must be high at reset

C39 /IRQ5 10k pull-up, must be high at reset, (aka PBM)
c41 /IRQ2 10k pull-up

c48 /RTS connects to MAX3222 EIA level shifter

C50 /CTS connects to MAX3222 EIA level shifter

c4a2 MODCLK 10k pull-up, must be high at reset

<all QSPI pins>

Cc1 /DS drives data strobe out at reset

INVOCATION METHODS (PIOxxxx functions versus PinXXXX macros)

The CF1 and CF2 uses two methods to control the CPU controlled I/0 pins, with the Pin inline
assembly language macros offering far better raw speed in exchange for sometimes quirky
behaviors when compared to the PIO functions. The PIO functions always do what is requested
in that they force the pin from its alternate function and force the I/O direction to match
the request before actually performing the action. At 16MHz, CPU controlled PIO functions
take on the order of 40us. The Pin macros exist because they take only a fraction of the time
required by the PIO functions for CPU controlled I/0 pins. However, they only work if the
pins have previously been properly setup as I/O and specifying direction with at least one
earlier PIO request.

So why use Pin macros for TPU pins? It's because they take only several microseconds and the
majority of pin operations are not used in tight loops or with synchronization constraints. A
good rule of thumb is to use only PIO functions unless you need the performance of the Pin
macros and then use them sparingly and with the proper setup.

The CF2 TPU controlled I/0 pins retain both the Pin inline assembly language macros and the
PIO functions for portability and orthogonality, but at high speeds, the benefits are less
and the quirkiness is greater. For TPU PIO functions, the 16MHz requests take on the order of
60us, but that time may increase as the TPU workload increases (e.g. high-speed PWM, multiple
fast UARTs). The TPU Pin macros also use inline assembly language for a speed boost, but the
big speed gains come from ignoring the completion status which requires a loop and accounts
for the bulk of normal TPU operation request. This becomes an issue when multiple TPU
operations will be requested without an intervening 50us to allow the previous operation to
complete. The TPU I/0 pins simply cannot keep up with a barrage of Pin macro commands because
they do not wait for acknowledgement before returning control to the program. This is most
evident by putting a PinToggle request in a tight loop - the pin will just stay in the same
state because new commands come in before the last one can complete. Inserting a 50us delay
in the loop will remedy the problem. Of note, the same loop with a CPU pin and no delay will
generate a 120kHz square wave.



The code snippet below shows three TPU GPIO access methods with cycle times of: PIO 11@us,
Pin with sys call 34us, and Pin with extra macro 1l6us. Variations on these may help in
translating CF1 code to the CF2.

bool M_TPUHostServiceCheckComplete(ushort tch: d@): do = \
{ oxD080, 0x7203, OxE1A9, OxC2B8, OxFE18, Ox57Cl, ©x2001 };

void main(void)

{
ushort test tch = TPUChanFromPin(25);

// Identify the progam and build

printf("\nProgram: %s: %s %s \n", __ FILE__, _ DATE__, _ TIME_ );

// Identify the device and its firmware

printf("Persistor CF%d SN:%1d BIOS:%d.%e2d PicoDOS:%d.%e2d\n", CFX,
BIOSGVT.CFxSerNum, BIOSGVT.BIOSVersion, BIOSGVT.BIOSRelease,
BIOSGVT.PICOVersion, BIOSGVT.PICORelease);

while (! kbhit()) // 110us, 9kHz
{
PI0OSet(25); // 50us HT
PIOClear(25); // 60us LT
}

cgetc(); // clear

while (! kbhit()) // 34us, 30kHz
{
PinSet(25); // 12us HT
TPUHostServiceCheckComplete(25, true);
PinClear(25); // 22us LT
TPUHostServiceCheckComplete(25, true);
}

cgetc(); // clear

while (! kbhit()) // 16us, 61kHz
{
PinSet(25); // 3us HT

while(! M _TPUHostServiceCheckComplete(test tch))

3
PinClear(25); // 13us LT
while(! M _TPUHostServiceCheckComplete(test tch))

J

}
cgetc(); // clear

} //____ main() ___ //



